skip to main content


Search for: All records

Creators/Authors contains: "Tan, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mikyška, J. (Ed.)
  2. Mikyška, J. (Ed.)
  3. Siilicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum light on-chip. Scaling and integration are the most fundamental challenges facing quantum science and technology. We report an all-silicon quantum light source based on a single atomic emissive center embedded in a silicon-based nanophotonic cavity. We observe a more than 30-fold enhancement of luminescence, a near-unity atom-cavity coupling efficiency, and an 8-fold acceleration of the emission from the all-silicon quantum emissive center. Our work opens immediate avenues for large-scale integrated cavity quantum electrodynamics and quantum light-matter interfaces with applications in quantum communication and networking, sensing, imaging, and computing.

     
    more » « less
    Free, publicly-accessible full text available June 7, 2024
  4. We include the single graviton loop contribution to the linearized Einstein equation. Explicit results are obtained for one loop corrections to the propagation of gravitational radiation. Although suppressed by a minuscule loop-counting parameter, these corrections are enhanced by the square of the number of inflationary e -foldings. One consequence is that perturbation theory breaks down for a very long epoch of primordial inflation. Another consequence is that the one loop correction to the tensor power spectrum might be observable, in the far future, after the full development of 21 cm cosmology. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 2’. 
    more » « less
  5. We give the first reconstruction algorithm for decision trees: given queries to a function f that is opt-close to a size-s decision tree, our algorithm provides query access to a decision tree T where: - T has size S := s^O((log s)²/ε³); - dist(f,T) ≤ O(opt)+ε; - Every query to T is answered with poly((log s)/ε)⋅ log n queries to f and in poly((log s)/ε)⋅ n log n time. This yields a tolerant tester that distinguishes functions that are close to size-s decision trees from those that are far from size-S decision trees. The polylogarithmic dependence on s in the efficiency of our tester is exponentially smaller than that of existing testers. Since decision tree complexity is well known to be related to numerous other boolean function properties, our results also provide a new algorithm for reconstructing and testing these properties. 
    more » « less
  6. We initiate the study of a fundamental question concerning adversarial noise models in statistical problems where the algorithm receives i.i.d. draws from a distribution D. The definitions of these adversaries specify the {\sl type} of allowable corruptions (noise model) as well as {\sl when} these corruptions can be made (adaptivity); the latter differentiates between oblivious adversaries that can only corrupt the distribution D and adaptive adversaries that can have their corruptions depend on the specific sample S that is drawn from D. We investigate whether oblivious adversaries are effectively equivalent to adaptive adversaries, across all noise models studied in the literature, under a unifying framework that we introduce. Specifically, can the behavior of an algorithm A in the presence of oblivious adversaries always be well-approximated by that of an algorithm A′ in the presence of adaptive adversaries? Our first result shows that this is indeed the case for the broad class of {\sl statistical query} algorithms, under all reasonable noise models. We then show that in the specific case of {\sl additive noise}, this equivalence holds for {\sl all} algorithms. Finally, we map out an approach towards proving this statement in its fullest generality, for all algorithms and under all reasonable noise models. 
    more » « less
  7. We design an algorithm for finding counterfactuals with strong theoretical guarantees on its performance. For any monotone model f:Xd→{0,1} and instance x⋆, our algorithm makes S(f)O(Δf(x⋆))⋅logd {queries} to f and returns an {\sl optimal} counterfactual for x⋆: a nearest instance x′ to x⋆ for which f(x′)≠f(x⋆). Here S(f) is the sensitivity of f, a discrete analogue of the Lipschitz constant, and Δf(x⋆) is the distance from x⋆ to its nearest counterfactuals. The previous best known query complexity was dO(Δf(x⋆)), achievable by brute-force local search. We further prove a lower bound of S(f)Ω(Δf(x⋆))+Ω(logd) on the query complexity of any algorithm, thereby showing that the guarantees of our algorithm are essentially optimal. 
    more » « less
  8. We study the problem of certification: given queries to a function f : {0,1}n → {0,1} with certificate complexity ≤ k and an input x⋆, output a size-k certificate for f’s value on x⋆. For monotone functions, a classic local search algorithm of Angluin accomplishes this task with n queries, which we show is optimal for local search algorithms. Our main result is a new algorithm for certifying monotone functions with O(k8 logn) queries, which comes close to matching the information-theoretic lower bound of Ω(k logn). The design and analysis of our algorithm are based on a new connection to threshold phenomena in monotone functions. We further prove exponential-in-k lower bounds when f is non-monotone, and when f is monotone but the algorithm is only given random examples of f. These lower bounds show that assumptions on the structure of f and query access to it are both necessary for the polynomial dependence on k that we achieve. 
    more » « less
  9. Using the framework of boosting, we prove that all impurity-based decision tree learning algorithms, including the classic ID3, C4.5, and CART, are highly noise tolerant. Our guarantees hold under the strongest noise model of nasty noise, and we provide near-matching upper and lower bounds on the allowable noise rate. We further show that these algorithms, which are simple and have long been central to everyday machine learning, enjoy provable guarantees in the noisy setting that are unmatched by existing algorithms in the theoretical literature on decision tree learning. Taken together, our results add to an ongoing line of research that seeks to place the empirical success of these practical decision tree algorithms on firm theoretical footing. 
    more » « less